analogous to the differentisl equations that describe the current and voltage ir
 resozance and to fall off rapidly above this frequency.
Finaly, this clepter revews teecniques for characterizirg real lasers. These
 theoretizal derivations. They also provide prectica! terminal parametors that are useful in the desige of optoelectronic circuits.

2.2 Carrier generamon and recombination in active regiovs

The text eccompanying Figs. 1.4, 1.5, and 1.13 considers the current injected irto the terminals of a diode laser or LED, and suggests it is desirabie to have However, ir. practice only a fraction, η_{i}, of the injected current, I, does contribute to such carriers. In Fig 21 we again illusta: the process of ca-tier injecticn into a double-tweterostructure acive region using a sontewhat more accurate sketch of the energy gap vs. depta into the substratc.
Since the defiritions of the active egion and the internal quartum efinciency,
n_{i}, are so critical to further aralysis, we aighlight them here for easy refererce.
Actine region. the region where yecombining carriers contrbute to weffui gain and
The active region sustally the lowest bandgap region within the depletion
 ecnvenicnt to include some of tie surfounding ineernediate bandgap regions. emission and even gain at some undesired wavele.gtia elsewhere in the device.
Interaut quantom efficiensy, ni: the sfaction of termanal current thet generates carriers in the acrive regich.

CHAPTER TWO
 A Phenomenological Approach to Diode Lasers

2.1 introduction

In this chapter we attempt to develop ar engineering soolbox of dicde laser properties based largely upon phexomenological arguments. In the cobise of
this development, we make heavy reierence to several appendices for a review of some of tie underilying physics. charge into douile-heterostructure active regions and its sabsequent reoombination. Some of this electron-hole recombination generates photons by sFontaneous emission. This inzoherent light is impoztent in LEDs, and a section
is devoted to ceriving the rolevant equations governing LED operatior. Sections 2.4 through 2.6 provide a systernatic derivation of the de lightcurrent chatacteristics of diode lasers. First, the rate eqzation for pioton generation and loss in a laser cavity is developed. This shows that only a snall portion of the spontanzously generated light contributes to the lasing mode. carters that are stimulated to recombine ty light in a cervain mode cont:ibute more photons to that same mocie. Thus, the stimulated carrier recombination/ photon generation process is a gain process. The threshold gain for lasing is stadied next, and it is found to be the gain necessary to compensate for cavity losses. The curreat required to eeach this gain is called the theshold current, and it is shown to be the current recessary to supply carriers for the utproductive nonradiajive and spontaneous recombination prozesses, which clamp at their threshold value as more current is applied. Abcve threshod, all
additional injected carriers recombining in the active region are shown to additional injected carriers recombining in the active region ane shown to
The next section deals with the modulation of lasers. Here or the first time

It is important to realize that this definition incluses all of the carriers that are injected into the active region, not just carriers that recombine radiatively at the desired uansition energy. This definition is oftentimes misstared in the literature. doped, so that under high injection levels relevant to LEDs and lases, charge neutrality dictates that the electron density equals the hole censity, i..e, $N=P$ in the active region. Thas, we can greatiy simplify our analysis by specificaliy tracking only the electron density, N.

The carrier density in the active region is governed by a dynamic poocess. In fact, we can compare the process of establishing a certain steady-state carrier density in the active region to that of establishing a certain water level in a reservoir which is being simultareously filled and crained. This is showr schematically in Fig. 2.2. As we proceed, the various filling (geceration) and drain (recombination) terms illiustrated will be defned. The curtent leakage iustrated in Fig. 2.2 contributes to reducing η_{i} and is created by possible shinn "paths around the active region. The carrier leakage, R_{i}, is due to carriers splashing" out of the active region (by thermionic emission or by lateral diffusion if no lateral confinement exists) before recombining. Thiss, this leakage contributes to a loss of carriers in the active region that could stherwise be used to generate light.

For the DH active region, the injected canemt provides a gencration term, and various radiative and nonradiative recombination prozesses as well as
carrier leakage provide recombination terms. Thus, we can write the rate equation,

$$
\frac{d N}{d t}=G_{\text {ben }}-R_{r e c t}
$$

Where $G_{\text {gee }}$ is the rate of injected electrons and $R_{\text {ree }}$ is the rate of recombining electrons per unit voiume in the active region. Since there are $\eta_{I} / / q$ electrons per second being injected into the active region,

FIGURE 2.2 Reseryoir with contimuous supply and leakage as an analog to a DH active region with current injection for carrier generation and radiative and nonradiative
recombination (LED or laser below threshold).

A PHENOMENOLOCICAL APPROACH TO DIODE LASERS

SPONTANEOUS PHOTON GENERATION AND LEDs

 2.3Before proceeding to the consideration of lasers, where $R_{s t}$ will become a dominant term above threshold, let us first try to gain some understanding of the situation where the photon density is relatively low, such as in an LED where this case is preselly to priar to a laser below threshold, in which the density. This case is actually similar to a laser below threshola, in which the
gain is insufficient to compensate for cavity losses, and generated photons do not receive net amplification.

The spontaneous photon generation rate per unit volume is exactly equal to the spontaneous electron recombination rate, $R_{s p}$, since by definition every time an electron-hole pair recombines radiatively, a photon is generated. Again, N equals the density of electron-ho pairs as whe $1 d$ a the generarelatively light doping). Under steady-state conditions $(d N / d t=0)$, the genera$R_{s t} \approx 0$,

(2.5)

The spontaneously generated optical power, $P_{s p}$, is obtained by multiplying the number of photons generated per unit time per unit volume, $R_{s p}$, by the energy per photon, $h \nu$, and the volume of the active region, V. We could solve this leads only to a parametric equation. The conventional approach is to bury this problem by defining a radiative efficiency, η_{r}, where

$\eta_{r}=\frac{R_{s p}}{R_{s p}+R_{n r}+R_{l}}$.

(2.6)

We must not forget that η_{r} usually depends upon carrier density somewhat. Then, from Eqs. (2.5) and (2.6),

$$
P_{s p}=h \nu V R_{s p}=\eta_{i} \dot{\eta}_{r} \frac{h v}{g} I
$$

The product of $\eta_{i} \eta_{r}$ is sometimes referred to as the LED internal efficiency. However, we shall not use this definition here, since it can lead to serious confusion when we move on to lasers. As we shall see, only η_{1} appears in the
laser output power, and we have called it alone the internal efficiency.

If we are interested in how much power the LED emits into some receiving aperture, $P_{\text {LED }}$, we must further multiply $P_{s p}$ by the net collection efficiency, n_{c}, experienced in transmitting photons out of the semiconductor and because the light is emitted in all directions, and much of it is totally reflected at the semiconductor-air interface. This situation is illustrated in Fig. 2.3.

FIGURE 2.4 Schematics of in-plane and vertical-cavity lasers illustrating the active systems.
respectively. That is, $V_{p}=d_{\text {eff }} w_{\text {efs }} L$. Then, if the active region has dimensions, d, w, and L_{a}, the confinement factor can be expressed as, $\Gamma=\Gamma_{x} \Gamma_{y} \Gamma_{z}$, where
 factor for $L_{a} \leqslant \lambda$.
Photon loss occurs within the cavity due to optical absorption and scattering out of the mode, and it also occurs at the output coupling mirror where a
portion of the resonant mode is usefully coupled to some output medium. These losses will be quantified in the next section, but for now we can characterize the net loss by a photon (or cavity) lifetime, τ_{p}, analogous to how we handled electron losses above. A first version of the photon rate equation

$$
\frac{d N_{p}}{d t}=\Gamma R_{s t}+\Gamma \beta_{s p} R_{s p}-\frac{N_{p}}{\tau_{p}},
$$

where $\beta_{s p}$ is the spontaneous emission factor. As indicated in Appendix 4 for uniform coupling to all modes, $\beta_{s p}$ is just the reciprocal of the number of optical
modes in the bandwidth of the spontaneous emission. As also indicated by Eq. (2.12), in the absence of generation terms, the photons decay exponentially with a decay constant of τ_{p}. Again, this is really the definition of τ_{p}.
Equations (2.4) and (2.12) are two coupled equations that can be soived for
the steady-state and dynamic responses of a diode laser. However, in their present form there are still several terms that need to be written explicitly in terms of N and N_{p} before such solutions are possible. First, we shall consider $R_{s t}$.

A PHENOMENOLOGICAL APPROACH TO DIODE LASERS
which the 3 dB cutoff frequency, $\omega_{e}=1 / \tau$. In order for t to be constant: (1) the cubic term must be negligible and (2) either the linear term, $A N$, must dominate (not good, since this represents nonradiative recombination) or the active region must be heavily doped, such that the $B N^{2}$ term which really equals $B N P$, can be written as $\left(B P_{d}\right) N$. That is, the p-type doping level, P_{d}, must be greater than the injection level, N, so that $P_{d}+P \approx P_{d}$. Under these conditions, then, the
time response is just a simple exponential decay, $N(t)=N_{l} e^{-t / \tau}$
and the frequency response is a Lorentzian function,

$N(\omega)=\frac{N(0)}{1+j \omega \tau}$,

(2.11)
which drops to $0.707 N(0)$ at $\omega \tau=1$. For $R_{s p} \approx\left(B P_{d}\right) N$, the power out, $P_{L E D}$, which is proportional to $R_{s p}$, will also have the same frequency response. The other cases are left as exercises for the reader, but it should be clear that the cutoff frequency will be reduced if the carrier lifetime is increased.

2.4 PHOTON GENERATION AND LOSS IN LASER CAVITIES

For the diode laser, we must now further investigate the nature of the net stimulated recombination rate, $R_{s r}$, in generating photons as well as the effect of the resonant cavity in storing photons. In analogy with Section 2.2, we wish to construct a rate equation for the photon density, N_{p}, which includes the photon generation and loss terms. We shall use the subscript p to indicate that variables are referring to photons.

A main difference between the laser and LED, discussed in Section 2.3 above, is that we only consider light emission into a single mode of the resonant cavity
in the laser. Since there are typically thousands of possible optical modes in a in the laser. Since there are typically thousands of possible optical modes in a
diode laser cavity, only a small fraction of $R_{s p}$ contributes to the photon generation rate for a particular mode. Appendix 4 discusses the possible optical modes of a resonant cavity using some of the results of Appendix 3. Note that the number of effective modes in a small vertical-cavity laser can be much fewer, typically dozens rather than thousands.

The main photon generation term above threshold (the regime of interest in
lasers) is $R_{\text {m }}$. Every time an electron-hole pair is stimulated to recombine lasers) is $R_{s t}$. Every time an electron-hole pair is stimulated to recombine,
another photon is generated. However, as indicated in Fig. 2.4 , since the cavity another photon is generated. However, as indicated in Fig. 2.4, since the cavity
volume occupied by photons, V, is usually larger than the active region volume occupied by electrons, V, the photon density generation rate will be $\left[V / V_{p}\right] R_{s}$ not just $R_{s t}$. This electron-photon overlap factor, V / V_{p}, is generally referred to as the confinement factor, Γ. Sometimes it is convenient to introduce an effective
thickness, width, and length that contains the photons, $d_{\text {efS }}, w_{\text {efs }}$, and L,
where a is the differential gain, $\partial g / \partial N$, and $N_{v r}$ is a transparency carrier density.
 as we shall detail in Chapter 4.) Of course, we also know that N / τ can be replaced by the polynomial $A N+B N^{2}+C N^{3}$, where the terms estimate defect, shall leave the rate equations in the general form of Eqs. (2.15) and (2.16) for future reference.
2.5 threshold or steady-state gain in lasers

In Section 2.4, we characterized the cavity loss by a photon decay constant or lifetime, τ_{p}. Here, we wish to explicitly express τ_{p} in terms of the losses associated with optical propagation along the cavity and the cavity mirrors. Also, we wish to show that the net loss of some mode gives the value of net gain required to reach the lasing threshold.

As shown in Appendix 3 and discussed in Chapter 1, the optical energy of

 $\exp (-j \tilde{\beta} z)$, where $\tilde{\beta}$ is the complex propagation constant which includes any loss or gain. Thus, the time- and space-varying electric field can be written as $\mathscr{E}=\hat{\mathbf{e}}_{y} E_{0} U(x, y) e^{j\left(\omega t-\hat{\beta}_{z}\right)}$,
(2.18)
where \hat{e}_{y} is the unit vector indicating 'TE polarization and E_{0} is the magnitude of the field. The complex propagation constant, β, includes the incremental
transverse modal gain, $\langle g\rangle_{x y}$ and internal modal loss, $\left\langle\alpha_{i}\right\rangle_{x y}$. That is,

$$
{ }^{\prime \alpha}\left({ }^{\alpha x}\langle 3 x\rangle-{ }^{\alpha x}\langle 6\rangle\right) \frac{2}{!}+g={ }^{1} d!+g=g
$$

where the real part of $\tilde{\beta} ; \beta=2 \pi \bar{n} / \lambda$, and \bar{n} is an effective index of refraction for the mode, also defined in Appendix 3. As shown in Appendix 5, the transverse
 power; thus, the factor of $\frac{1}{2}$ in this equation for the amplitude propagation

A PHENOMENOLOGIGAL APPROACH TO DIODE LASERS

zero elsewhere. This is generally valid for in-plane lasers, but not for VCSELs. As illustrated in Fig. 2.6, most laser cavities can be divided into two general sections: an active section of length L_{a} and a passive section of length L_{p}. Also, g and α_{n} will clearly be different in these two sections. In the passive section, by definition $g=0$, and α_{i} can be given a second subscript to designate its
location. The propagating mode is reffected by end mirrors, which have amplitude reflection coefficients of r_{1} and r_{2}, respectively, to provide a resonant cavity. The amount transmitted is potentially useful output.

In order for a mode of the laser to reach threshold, the gain in the active section must be increased to the point where all the propagation and mirror losses are compensated, so that the electric field exactly replicates itself after
one round-trip in the cavity. Equivalently, we can unravel the roundtrip to lie along the z-axis and require that $\mathscr{E}(z=2 L)=\mathscr{C}(z=0)$, provided we insert the mode reflection coefficients at $z=0$ and $z=L$. As a consequence of inserting these boundaries into Eq. (2.18), we obtain

(2.20)

The subscript th denotes that this characteristic equation only defines the threshold value of $\tilde{\beta}$. (In Chapter 3 we shall take a more basic approach to obtain this same characteristic equation.) Using Eq. (2.19), we can break the complex Eq, (2.20) into two equations for its magnitude and phase. For the
magnitude,
$r_{1} r_{2} e^{\left(\Gamma_{x y} g_{t h}-\alpha_{i \alpha}\right) L_{a}} e^{-\alpha_{i p} L_{p}}=1$,
(2.21)
where we have chosen reference planes to make the mirror reffectivities real. Solving for $\Gamma_{x y} g_{z h} L_{a}$ we obtain

$\Gamma_{x y} g_{z h} L_{a}=\alpha_{i a} L_{a}+\alpha_{i p} L_{p}+\ln \left(\frac{1}{R}\right)$,

where the mean mirror intensity reflection coefficient, $R=r_{1} r_{2}$. For cleavedfacet lasers based upon GaA s or $\operatorname{InP}, R \sim 0.32$. Dividing Eq. (2.22) by the total
 defining the average internal loss $\left(\alpha_{i a} L_{a}+\alpha_{i p} L_{p}\right) / L$ as $\left\langle\alpha_{i}\right\rangle$ we have

$\langle g\rangle_{t h}=\Gamma g_{t h}=\left\langle\alpha_{i}\right\rangle+\frac{1}{L} \ln \left(\frac{1}{R}\right)$

 For convenience
$(1 / L) \ln (1 / R)$. Noting that the photon decay rate, $1 / \tau_{p}=1 / \tau_{i}+1 / \tau_{m}=$ $v_{g}\left(\left\langle\alpha_{t}\right\rangle+\alpha_{m}\right)$, we can aiso write
$\Gamma g_{i n}=\left\langle\alpha_{i}\right\rangle+\alpha_{m}=\frac{1}{v_{g} \tau_{p}}$
 volume, the three-dimensional modal gain and loss used in Eqs. (2.23) and

 possible for $\Gamma_{z} \approx 2 L_{a} / L$, if the active segment
electric-field standing wave (see Appendix 5).

It is important to realize that Eqs. (2.23) and (2.24) give only the cavity loss

 it will be the primary subject of Chapter 4.

For the phase part of Eq. 2.20$), \exp \left(2 j \beta_{t h a} L_{a}\right) \exp \left(2 j \beta_{x h p} L_{p}\right)=1$, requires
that $\beta_{\text {tha }} L_{a}+\beta_{k h p} L_{p}=m \pi$, which gives a condition on the modal wavelength,
(2.25)

$$
\lambda_{t h}=\frac{2}{m}\left[\bar{n}_{a} L_{a}+\bar{n}_{p} L_{p}\right],
$$

where m is the longitudinal mode number. It should also be realized that \vec{n} varies with wavelength ($\partial \bar{n} / \partial \lambda$, dispersion), and it generally is also dependent upon the carrier density ($\partial \ddot{n} / \partial N$, plasma loading). Thus, when making computa-

 in carrier density (water level). The flows R_{v} ard $R_{s p}$ do not change ajove threshold.

FIGURE 2.8 Gain vs. carrier density and carier density vs. inpu: current. The car:ier density ciamps at threshold causing the gein to clamp also.
(216) ate valid both above and below Although the rate equations (2.15) and (216) are 1 . threshold, We shail fiece together a below-threshold LeD characteristic wine
 Thus, we sball here concentrate on che above threshold laser part. The first
A PHENOMENOLOGICAL APPROACH TO DIOSE LASERS
$(\angle 己 Z)$
urs om
"cuso ot
$(9 Z Z)$ find the wavelength separation between two modes, m and $m+1$, to be

$$
\frac{\left.\because^{d} T^{d \delta} \underline{u}+{ }^{0} 7^{v 8} \underline{w}\right) Z}{\tau^{r}}=? 8
$$

where the group effective index, for the $;$ th section, $\bar{n}_{\theta j,}=\bar{n}_{j}-\lambda(\partial \bar{n} / \beta \lambda)=$ $\bar{n}_{j}+a(\partial \bar{n} / \partial \omega)$. The group index in semiconductors is typically $20-30 \%$ larger than the index of refraction, depending on the specific wavelength relative to
 GaAs and InGaAsP DH in-plane lasers are near 4.5 and 4, respecrively.
Finally, it is important to nore that the steady-state gain in a laser operating
 is, in a laser capity,

(2.28)

If the gain were highe: than: g_{1}, then the field amplitude wouid continue to increase withont boind, and this clearly cannot exist in the steady stete.

 reducing the carrier density and gain until a new steady-state dynamic belance

 above threshold. In terms of our reservoir analogy depicted in Fig. 2.2, the
 КहMild

 density to clamp, in order to keep the gain at its threshold value.

42 A PHENOMENOLOGICAL APPROACH TO DIODE LASERS
step is to use the below threshold steady-state carrier rate equation, Eq. (2.5) almost at threshold. That is,

Then, recognizing that $\left(R_{s p}+R_{n r}+R_{t}\right)=A N+B N^{2}+C N^{3}$ depends monotonically on N, we observe from Eq. (2.29) that above threshold ($R_{s p}+R_{n r}+R_{t}$) will also clamp at its threshold value, given by Eq. (2.30). Thus, we can substitute
Eq. (2.30) into the carrier rate equation, Eq, (2.15), to obtain a new abovethreshold carrier rate equation,

$$
\frac{d N}{d t}=\eta_{i} \frac{\left(I--I_{t h}\right)}{q V}-v_{q} g N_{p},
$$

where we have assumed η_{i} is not a function of current above threshold. From Eq. (2.31) we can now calculate a steady-state photon density above threshold where $g=g_{t h}$. That is,

$N_{p}=\frac{\eta_{i}\left(I-I_{t h}\right)}{q v}$.

(2.32)

Now with some relatively straightforward substitutions, we can calculate the power out, since it must be proportional to N_{p}. To obtain the power out, we first construct the stored optical energy in the cavity, $E_{o s}$, by multiplying the That is, $E_{o s}=N_{p} h v V_{p}$. Then, we multiply this by the energy loss rate through the mirrors, $v_{g} \alpha_{m}=1 / \tau_{m}$, to get the optical power output from the mirrors, $P_{0}=v_{\theta} \alpha_{m} N_{p} h \nu V_{p}$.

Substituting from Eqs. (2.32) and (2.24), and using $\Gamma=V / V_{p}$, in Eq. (2.33), $P_{0}=\eta_{i}\left(\frac{\alpha_{m t}}{\left\langle\alpha_{i}\right\rangle+\alpha_{m}}\right) \frac{h v}{q}\left(I-I_{t h}\right) . \quad\left(I>I_{t h}\right)$

Now, by defining

$n_{d}=\frac{\eta_{i} \alpha_{m}}{\left\langle\alpha_{i}\right\rangle+\alpha_{m}}$,

we can simplify Eq. (2.34) to be
397 A QUANTUM MECHANICS PRIMER
the definitions for k and γ given below Eqs. (A1.8) and (A1.9), the characteristic equations can be conveniently normalized:

These equations can be solved graphically by plotting both the left-hand side (LHS) and the right-hand side (RHS) as a function of $n_{Q^{w}}$. Figure A1.3
Note that only a finite set of quantum numbers exist for a given potential barrier, V_{0}. The normalized variable, $n_{\max }$ when rounded up to the nearest integer, yields the largest number of bound states possible for a given V_{0}. For example, with $V_{0}=3 E_{1}^{\infty}$, from Eq. (A1.17), we find that $n_{\max }=\sqrt{3} \approx 1.73$. Thus, only two bound states are possible under these circumstances. This is perhaps demonstrated more clearly by plotting the possible $n_{Q W}$ as a continuous function

FIGURE A1.3 Graphical solution to Eqs. (A1.15) and (A1.16). The intersections between the LHS and RHS of the equations yield the possible values of $n_{Q W}$ for a given $n_{\text {max }}$ (or correspond to the LHS of the symmetric (antisymmetric) characteristic equation.
399
ELEMENTS OF SOLID-STATE PHYSICS
(A1.18)

following formula:

A1.2 ELEMENTS OF SOLID-STATE PHYSICS

A1.2.1 Electrons in Crystals and Energy Bands
Electrons in crystais experience a periodic poteatial originating from the
 pic:ure alorg one dimension of such a lattice. As ptedicted in Chapter 1 , when N_{A} atoms are coupled in such a marner, eaci atomic energy level o: the
 swo: о о interact.
There are several approaches that have been applied to solve this problem.

 but by leaving them in general form, we can still get a good picure of the
The first step is to go back to Schrödirge:'s equation ard consider a possible general solution for a perturbed system, such as the atom which nas been placed into a crystal. The isolated atom had a set of crthorormal wavefunction

 illustrated.

REVIEN OF ELEMEN-ARY SOLD-STATE FHYSICS

FIGURE A1.4 Plot cf quartum numbers as a function of the maximum allowed cuantim related to V_{0} and E through E_{c}. (A1.17). T'ne lower plot gives a close-1p view of the curves (which have been shifted verticaily to fit on the same scale).
of $n_{\text {max }}$. Figure A1.4 gives all possible solvitions for $n_{\text {max }} \leq 6$ (which 20 vers nearly all practical anges o. interest). Note that all quantum numbers approan hers intege: limit as $n_{\text {max }}$ mereases toward infnity. ha addition, the quanturn numbers
cease to satisfy the equations indicated by the cpen circles) when a given quantum number approaches the integer value of the next lowest state. The lowest quantum number can be approximated to within $\pm 1 \%$ using the

